8/2,背包问题
挺经典的 dp 问题,就是不知道为啥 leetcode 上没有。
特点一:至少要用目标值作为一个 DP 维度
特点二:对具体元素敏感(比如 01 背包),但对同一 totalSize / totalValue 来讲,有时候如何构造而来的具体路线不重要。这是由元素特性和背包 size 的约束条件决定的,也是有别于其他种类 DP 的一个重要区别。
比如 Combination Sum IV,就是典型的 “对最终结果敏感,对元素个数不敏感” 的问题,每次可以取任意元素,任意个,因此只用 dp[sum] 一个维度做 dp 就够了。
在只取 min/max 的时候我们不同的循环顺序都能保证正确答案;但是求解的数量时,要以 target value 为外循环。
Backpack
先从暴力搜索开始,结构图如下:
对于每个元素都会衍生出 (取/不取) 两种选择,所有可能的策略则是从最左面到最右面的一条 path,也即 binary tree 从 root 到 leaf node 的路径个数。
显然,路径个数 = 叶节点个数 = 2^n.
接下来的观察是关于题目性质的,可以发现我们最关注的是 “sum”,而不太关心这个 sum 是怎么来的。比如 sum = 10 的时候,我们可以取【2,3,5】 或者 【3,7】,虽然是两种不同的解,但是最终效果完全一样,也就是完全一样的“状态”。因此,如果我们用 sum 来定义状态,就会发现很多的 overlap subproblems,可以进一步采用记忆化搜索进行优化。
另一个需要注意的地方是,每个元素只能取一次,只有 “取” 或者 “不取” 的选择,因此当前 index 上的状态只能取决于之前的状态,而不能重复考虑当前元素。
dp[i][sum] = 前 i 个元素里我们能不能凑出来 sum.
dp[i][sum] 要么取决于 dp[i - 1][sum] (不取当前元素)
要么取决于 dp[i - 1][sum - nums[i]] (取当前元素)
其中每一行 i 都只考虑前一行 i - 1 的值。
public int backPack(int m, int[] A) {
// write your code here
boolean[][] dp = new boolean[A.length+1][m+1];
for(int i = 0; i <= A.length; i++) dp[i][0] = true;
int ans =0;
for(int i=1;i<=A.length;i++)
for(int j=1;j<=m;j++){
dp[i][j] = dp[i-1][j];
if(j>=A[i-1]) dp[i][j] = dp[i][j] || dp[i-1][j-A[i-1]];
if(dp[i][j]&&j>ans) ans = j;
}
return ans;
}
考虑到我们只需要存最多两行的结果,滚动数组优化就显而易见了。
其实在背包九讲里面也有写过只存一行, 新一行的结果每次从右往左扫的,更经济些。简易程度上我还是更喜欢用取 mod 的滚动数组写法。
Backpack II
这次每个元素除了 size 之外也具有 value,就变成了更典型的 01 背包问题。
问题的结构依然具有 01 背包的性质,选一条 path 使得最终总价值最大,path 总数为 2^n. 同时对于同一个总的空间占用 totalSize 或者 totalValue,我们并不在乎它是怎么构造出来的,只要不重复选元素就行。
因此我们 dp 结构一致,而采用 int[][] 来记录
dp[i][j] 包里有 j 的空间,可以取前 i 个元素时,所能获得的最大收益。
同时因为每次新迭代循环中, i 是不会走回头路的,所以状态与状态之间可以在不违反题意的情况下衔接起来
public int backPackII(int m, int[] A, int V[]) {
// write your code here
int[][] dp = new int[A.length+1][m+1];
int ans = 0;
for(int i=1;i<=A.length;i++){
for(int j=1;j<=m;j++){
dp[i][j] = dp[i-1][j];
if(j-A[i-1]>=0)
dp[i][j] = Math.max(dp[i][j], dp[i-1][j-A[i-1]]+V[i-1]);
}
}
return dp[A.length][m];
}
在这里把两个for循环颠倒也是可以的, 等于一个是从上往下dp, 颠倒后是从左往右dp, 不影响运算结果
Perfect Squares
仔细观察一下这题:
数字n依赖数字n-1, 最坏情况f(n) = f(n-1)+1;
我们要凑出来一个和正好是 n 的选择组合;
能选的元素是固定数量的 perfect square (有的会超)
一个元素可以选多次;
这就是背包啊!
public int numSquares(int n) {
int x = (int)Math.sqrt(n);
int[] dp = new int[n+1];
Arrays.fill(dp, Integer.MAX_VALUE); dp[0]= 0;
for(int i=1;i<=n;i++){
for(int j=1;j<=x;j++){
if(i-j*j>=0) dp[i] = Math.min(dp[i], dp[i-j*j]+1);
}
}
return dp[n];
}
Coin Change
背包类问题的马甲题。
每个元素可以取任意次;
只问最小的硬币数,就类似于 climbing stairs,只靠 sum 一个维度就可以了,但是循环依然是两层。
数组初始化为maxvalue时, dp[i]+1可能溢出, 导致最小值
比较直观的写法是这样(内外循环的顺序无所谓,但是最好从 amount 那个维度开始)
public int coinChange(int[] coins, int amount) {
int[] dp = new int[amount+1];
Arrays.fill(dp, Integer.MAX_VALUE); dp[0]=0;
for(int i=1;i<=amount;i++)
for(int j=0;j<coins.length;j++){
if(i>=coins[j] && dp[i-coins[j]]!=Integer.MAX_VALUE){
dp[i] = Math.min(dp[i], dp[i-coins[j]]+1);
}
}
return dp[amount]==Integer.MAX_VALUE?-1:dp[amount];
}
Backpack III
和背包 II 看起来结构一样,但是这次多了一个新条件:同一个元素可以取多次。
然而这个条件会带来一个重要的改变:元素的具体位置和数量都不重要了。我们可以直接扔掉这个维度,就像 Coin Change 和 Combination Sum IV 一样。
因此可以看到,只有对元素的选择(位置) / (数量)有限制性条件的 DP,才会需要另一个维度。
对位置有要求的,用 i 代表“前 i 个元素”;
对数量有要求的,用 j 代表“选 k 个元素”;
两个全有要求的,就两个维度都加上去。
两个维度都加上去,我们就有了 k sum 问题。
public class Solution {
/**
* @param A an integer array
* @param V an integer array
* @param m an integer
* @return an array
*/
public int backPackIII(int[] A, int[] V, int m) {
// Write your code here
// Maximum value we can get
int[] dp = new int[m + 1];
for(int i = 0; i < A.length; i++){
for(int j = 1; j <= m; j++){
if(j - A[i] >= 0)
dp[j] = Math.max(dp[j], dp[j - A[i]] + V[i]);
}
}
return dp[m];
}
}
Combination Sum IV
原理和 climbing stairs 差不多,建一个大小等于 target + 1 的 array 代表多少种不同的方式跳上来,依次遍历即可。
时间复杂度 O(n * target)
注意这里内外循环的顺序不能错,要先按 sum 从小到大的顺序看,然后才是遍历每个元素。因为所谓 bottom-up,是相对于 sum 而言的,不是相对于已有元素的 index 而言的。
可以看到,在只取 min/max 的时候我们不同的循环顺序都能保证正确答案;但是求解的数量时,要以 target value 为外循环。
public class Solution {
public int combinationSum4(int[] nums, int target) {
// dp[sum] = number of ways to get sum
int[] dp = new int[target + 1];
// initialize, one way to get 0 sum with 0 coins
dp[0] = 1;
for(int j = 1; j <= target; j++){
for(int i = 0; i < nums.length; i++){
if(j - nums[i] >= 0) dp[j] += dp[j - nums[i]];
}
}
return dp[target];
}
}
bottom up
public int combinationSum4(int[] nums, int target) {
// dp[i] = dp[i-nums[0]] + ...+ dp[i-nums[end];
int[] dp = new int[target+1];
dp[0] = 1;
for(int i=0;i<=target;i++){
for(int num : nums){
if(i+num<=target)
dp[i+num] += dp[i];
}
}
return dp[target];
}
K sum
背包类问题的扩展版本~
我们关注的维度有三个:
前 i 个元素,因为一个元素只能选一次;
选了 j 个元素,因为我们要求选 k 个数;
总和 sum,用于每次试图添加新元素时用来查询。
时间:O(len * k * target),三重循环
空间:O(k * target)
public int kSum(int A[], int k, int target) {
// write your code here
int[][][] dp = new int[A.length+1][k+1][target+1];
dp[0][0][0]=1;
dp[1][0][0]=1;
for(int i=1;i<=A.length;i++)
for(int j=1;j<=k;j++)
for(int t=1;t<=target;t++)
{
if(t>=A[i-1])
dp[i%2][j][t] = dp[(i-1)%2][j][t] +dp[(i-1)%2][j-1][t-A[i-1]];
else
dp[i%2][j][t] = dp[(i-1)%2][j][t];//don't select
}
return dp[A.length%2][k][target];
}
Ones and Zeroes
研究了一下,发现是个背包。每个物品只有1个,占‘0’ ‘1’两种资源。一共资源有‘0’,‘1’两种资源。因为每个物品只能用一次,感觉dp不太好写。写了dfs,18个test cases后超时。top down approach应该没有重复子问题才对。
public class Solution {
int maxCount = 0;
public int findMaxForm(String[] strs, int m, int n) {
dfs(strs, 0, 0, m, n);
return maxCount;
}
public void dfs(String[] strs, int start, int curCount, int m, int n){
if(start>strs.length||m<0||n<0)
return;
maxCount = Math.max(curCount, maxCount);
for(int i=start;i<strs.length;i++){
int[] digits = getCount(strs[i]);
dfs(strs, i+1, curCount+1, m-digits[0], n-digits[1]);
}
}
public int[] getCount(String s){
char[] arr = s.toCharArray();
int[] ans = new int[2];
for(char c:arr){
if(c=='0') ans[0]++;
else ans[1]++;
}
return ans;
}
}
这道题dp最重要的是要解决overcounting的问题。这也是一开始我尝试用dp没成功的地方。传统的dp都是从左上到右下,枚举的物品放在最内层循环。这样的话在计算max(dp[i][j], dp[i - numZeroes][j - numOnes] + 1时无法知道上一步用了哪个string,所以会存在overcounting。
正确的解锁方式是:
枚举物品string放在最外层
计算dp矩阵的时候从右下到左上,dp状态转移矩阵不变。这样保证了用的重复子问题结果没有使用当前的string,解决了overcounting的问题。
public class Solution {
int maxCount = 0;
public int findMaxForm(String[] strs, int m, int n) {
int[][] dp = new int[m+1][n+1];
for(String s : strs){
int[] count = getCount(s);
for(int i=m;i>=count[0];i--)
for(int j=n;j>=count[1];j--){
dp[i][j]= Math.max(dp[i][j], dp[i-count[0]][j-count[1]]+1);
}
}
return dp[m][n];
}
public int[] getCount(String s){
char[] arr = s.toCharArray();
int[] ans = new int[2];
for(char c:arr){
if(c=='0') ans[0]++;
else ans[1]++;
}
return ans;
}
}